

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with EN 15804, ISO 14025, ISO 14040 and ISO 14044

TRAIN CLIMAVER®

Date of publication: 2019-06-28
Valid until: 2024-06-28
Based on PCR 2014:13 Insulation materials v 1.2
Scope of the EPD®: Spain and Portugal
Version: 3

General information

Manufacturer: Saint-Gobain Isover Ibérica S.L. Avenida del Vidrio S/N. 19200 Azuqueca de Hernares

PCR identification: Insulation materials version 1.2 (2014:13)

Product name and manufacturer represented: TRAIN CLIMAVER®; Saint-Gobain Isover Ibérica SL

Owner of the declaration: Saint-Gobain Isover Ibérica SL

EPD® prepared by: Nicolás Bermejo y Alfonso Díez

Contact: Nicolás Bermejo, Alfonso Díez (Saint-Gobain Isover Ibérica SL) **Email:** nicolas.bermejo@saint-gobain.com, alfonso.diez@saint-gobain.com

Declared issued: 2019-06-28. Valid until: 2024-06-28

Prepared by Alfonso Díez Monforte											
LCA and EPD® performed by Saint-Gobain Isover Ibérica SL											
Independent verification of the environmental declaration and data according to standard EN ISO 14025:2010											
External	Internal	\boxtimes									
Verifier by Nicolás Bermejo											
www.isover-techn	ical-insulation.com										

Product description

Product description and description of use:

This Environmental Product Declaration (EPD®) describes the environmental impacts of 1 m² of mineral wool with a thermal resistance of 1.0 $\text{K}\cdot\text{m}^2\cdot\text{W}^{-1}$.

TRAIN CLIMAVER® is a high density rigid mineral wool slab with shiplaps, faced externally with a reinforced kraft aluminium foil and internally with a black glass fabric of high tensile strength and resistance for cleaning methods according to UNE 100012.

The production site of Saint-Gobain Isover Ibérica SL uses raw materials of natural origin and abundant (i.e. volcanic rock or silica sand) in order to using fusion and fiberizing techniques to produce mineral wool products. The products obtained from mineral wools are characterized by its lightness due to its air containing structure that keeps immobile between its intertwined filaments.

On Earth, the best insulator is dry immobile air. At 10° C its thermal conductivity factor, expressed in λ , is 0.025 W/(m·K) (watts per meter Kelvin degree). The thermal conductivity of mineral wool is close to immobile air, and its lambda value is between 0.030 W/(m·K) for the most efficient wools to 0.044 W/(m·K) to the least efficient ones.

With its entangled structure, mineral wool is a porous material that traps the air, making it one of the best insulating materials. The porous and elastic structure of the wool also absorbs noise and knocks, offering acoustic correction inside premises. Mineral wools contain mainly organic materials, considered incombustible and do not propagate flames.

Isover's mineral wool insulation (Glass wool, Stone wool, etc) is used in buildings as well as industrial facilities. It ensures a high level of comfort, lowers energy costs derived from the use of the housing, minimizes carbon dioxide (CO2) emissions, prevents heat loss through pitched roofs, walls, floors, pipes and boilers, reduces noise pollution and protects homes and industrial facilities from the risk of fire.

Mineral wool products last for the average building's lifetime (which is often set at 50 years as a default), or as long as the insulated building component is part of the building.

Technical data/physical characteristics:

Thermal resistance of the product, (R): 0,78 K·m²·W⁻¹

The thermal conductivity of the mineral wool is: 0,032 W/(m·K)
Reaction to fire: Euroclass A2, s1-d0. (EN 13501-1 and EN 15715)
Fire and Smoke toxicity: R1 – HL3 according to EN 45545-2

Acoustic properties: 0,55 (without plenum)

Water vapour transmission: MV 1 (100 m) (EN 14303)

Description of the main components and/or materials for 1 m²:

PARAMETER	VALUE						
Weight per 1 m ² of product	2,144 Kg						
Thickness of wool	25 mm						
Surfacing	Fibre glass Aluminium Paper Polyethylene						
Packaging for the transportation and distribution	Polyethylene Wood pallet Labelling papers Paperboard						
Product used for the Installation	None						

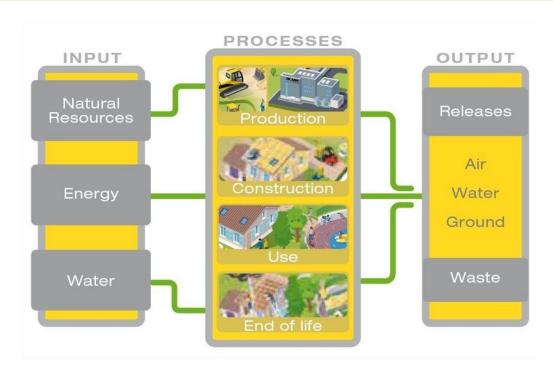
During the life cycle of the product any hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization¹" has been used in a percentage higher than 0,1% of the weight of the product.

The verifier and the programme operator do not make any claim nor have any responsibility of the legality of the product.

LCA calculation information

FUNCTIONAL UNIT	Providing a thermal insulation on 1 m² of product with a thermal resistance of 1 $\text{K}\cdot\text{m}^2\cdot\text{W}^{-1}$
SYSTEM BOUNDARIES	Cradle to Grave: Mandatory stages = A1-3, A4-5, B1-7, C1-4. Optional stage = D not taken into account
REFERENCE SERVICE LIFE (RSL)	50 years
CUT-OFF RULES	In the case that there is not enough information, the process energy and materials representing less than 1% of the whole energy and mass used can be excluded (if they do not cause significant impacts). The addition of all the inputs and outputs excluded cannot be bigger than the 5% of the whole mass and energy used, as well of the emissions to environment occurred. Flows related to human activities such as employee transport are excluded. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
ALLOCATIONS	Allocation criteria are based on mass

¹ http://echa.europa.eu/chem_data/authorisation_process/candidate_list_table_en.asp


GEOGRAPHICAL COVERAGE AND TIME PERIOD

Spain and Portugal, 2017

- "EPDs of construction products may be not comparable if they do not comply with EN 15804"
- "Environmental Product Declarations within the same product category from different programs may not be comparable"

Life cycle stages

Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage: the product stage of the mineral wool products is subdivided into 3 modules A1, A2 and A3 respectively "Raw material supply", "transport" and "manufacturing".

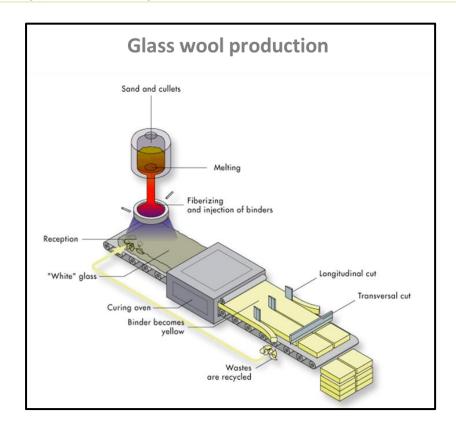
The aggregation of the modules A1, A2 and A3 is a possibility considered by the EN 15 804 standard. This rule is applied in this EPD.

Description of the scenarios and other additional technical information:

A1, Raw materials supply

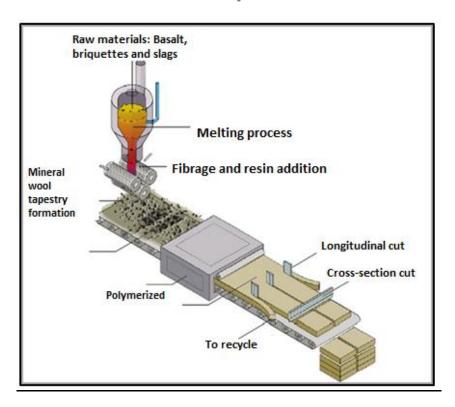
This module considers the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process

Specifically, the raw material supply covers production of binder components and sourcing (quarry) of raw materials for fibre production, e.g. sand and borax for glass wool. Besides these raw materials, recycled materials (agglomerates) are also used as input. Regarding to the electricity mix production, it has been used the Spanish mix corresponding to year 2017²


A2, Transport to the manufacturer

The raw materials are transported to the manufacturing site. In our case, the modelling includes the road distances travelled of each raw material.

A3, Manufacturing


This module includes the manufacturing of the product and packaging. Specifically, it covers the manufacturing of glass, resin, mineral wool (including the processes of fusion and fiberizing showed in the flow diagram), and the packaging.

Manufacturing process flow diagram

² Source: Red Eléctrica de España

Stone Wool production

Construction process stage, A4-A5

Description of the stage: the construction process is divided into 2 modules: A4, transport to the building site and A5, installation in the building.

A4, Transport to the building site: this module includes transport from the production gate to the building site.

Transport is calculated based on a scenario with the parameters described in the following table.

PARAMETER	VALUE/DESCRIPTION
Fuel type and consumption of vehicle or vehicle type used for transport i.e. long distance truck, boat, etc.	Average truck trailer with more than 32t payload, diesel consumption 38 litres for 100 km
Distance	450 km
Capacity utilization (including empty returns)	100 % of the capacity in volume 30 % of empty returns
Bulk density of transported products*	20-200 kg/m ³
Volume capacity utilization factor	1

^{*} Isover products presents a compression factor between 1 and 4. For an average volume of the truck of 65 m³ and the m² of product specified in the prices.

A5, Installation in the building: this module includes:

- Waste produced during the installation of the product (see value in percentage shown in the next table). These losses are sent to landfill (see landfill model for mineral wool at End of life chapter).
- Additional production processes done in order to compensate losses.

- Packaging waste processing, which are 100% collected and recycled.

PARAMETER	VALUE/DESCRIPTION
Wastage of materials on the building site before waste processing, generated by the product's installation (specified by type)	5 %
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling, for energy recovering, disposal (specified by route)	Product packaging waste is 100% collected and recycled. Following a conservative methodology, mineral wool losses are considered to be landfilled, while they are 100% recyclable and/or reusable.

Use stage (excluding potential savings), B1-B7

Description of the stage: the use stage is divided into the following modules:

- B1: Use
- B2: Maintenance
- B3: Repair
- B4: Replacement
- B5: Refurbishment
- B6: Operational energy use
- B7: Operational water use

Description of the scenarios and additional technical information:

Once installation is complete, no actions or technical operations are required during the use stages until the end of life stage. Therefore, mineral wool insulation products have no impact (excluding potential energy savings) on this stage.

End of Life Stage, C1-C4

Description of the stage: this stage includes the next modules:

C1, Deconstruction, demolition

The de-construction and/or dismantling of insulation products take part of the demolition of the entire building. In our case, the environmental impact is assumed to be very small and can be neglected

C2, Transport to waste processing

The model use for the transportation (see A4, transportation to the building site) is applied.

C3, Waste processing for reuse, recovery and/or recycling

The product is considered to be landfilled without reuse, recovery or recycling.

C4, Disposal

The mineral wool is assumed to be 100% landfilled.

Description of the scenarios and additional technical information:

End of life

PARAMETER	VALUE/DESCRIPTION								
Collection process specified by type	2,144 kg (collected with mixed construction waste)								
Recovery system specified by type	There is no recovery, recycling or reuse of the product once it has reached its end of life phase.								
Disposal specified by type	2,144 kg landfilled								
Assumptions for scenario development (e.g. transportation)	Average truck trailer with a 16-32t payload, diesel consumption 31 litres for 100 km								

Reuse/recovery/recycling potential, D

Description of the stage: module D has not been taken into account.

LCA Results

LCA model, aggregation of data and environmental impact are calculated from the TEAM™ software 5.2. CML v 4.2 impact method has been used, together with DEAM (2006) and Ecoinvent databases to obtain the inventory of generic data.

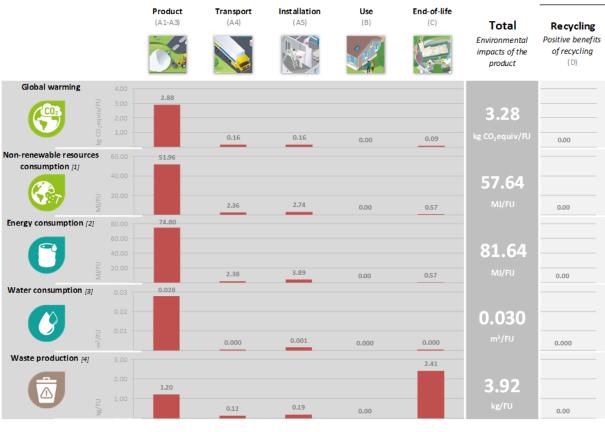
Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant (year 2017).

Below, are attached the tables with the detailed LCA results, which corresponds to the referent thickness results (35mm, when R=1). The results for the commercial thicknesses (30 mm and 45 mm) are showed on the annexes I and II.

					IMPACT	OS AMBIE	NTALES	TRAIN CLI	MAVER®								
		Product stage		truction age		Use stage								End of life			
Parameters		A1 / A2 / A3	A4 Transport	A5 Installatio n	B1 Use	B2 Maintenan ce	B3 Repair	B4 Replacem ent	B5 Refurbishm ent	B6 Operational energy use	B7 Operational water use	C1 Deconstruct ion / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling ³	
CO2	Global Warming Potential	2.88E+00	1.57E- 01	1.56E- 01	0	0	0	0	0	0	0	0	1.13E- 02	0	7.63E- 02	MND	
	(GWP) - kg CO2 equiv/FU			The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.													
	Ozone Depletion (ODP)	1.74E- 07	2.85E- 08	1.07E- 08	0	0	0	0	0	0	0	0	2.06E- 09	0	1.00E- 08	MND	
	kg CFC 11 equiv/FU	Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.															
<u>a</u> 5	Acidification potential (AP)	2.33E- 02	5.23E- 04	1.21E- 03	0	0	0	0	0	0	0	0	3.77E- 05	0	3.05E- 04	MND	
	kg SO2 equiv/FU	Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport															
NA I	Eutrophication potential (EP) kg (PO4)3- equiv/FU	4.31E- 03	8.97E- 05	2.25E- 04	0	0	0	0	0	0	0	0	6.47E- 06	0	8.78E- 05	MND	
	g (1 0 1/2 0 qu.i.v. 0			Exc	cessive enric	hment of wa	ters and cor	ntinental sur	faces with no	utrients, and	the associa	ted adverse	biological et	ffects.			
	Photochemical ozone creation (POPC)	2.67E- 03	1.50E- 04	1.44E- 04	0	0	0	0	0	0	0	0	1.08E- 05	0	4.28E- 05	MND	
	Ethene equiv/FU			The reaction	n of nitrogen				ght about by sence of sur				a photoche	mical reaction	on.		
	Abiotic depletion potential for non-fossil resources (ADP-elements) - kg Sb equiv/FU	5.69E- 06	2.96E- 07	3.01E- 07	0	0	0	0	0	0	0	0	2.13E- 08	0	8.73E- 09	MND	
	Abiotic depletion potential for fossil resources (ADP-fossil	5.20E+0 1	2.36E+0 0	2.74E+0 0	0	0	0	0	0	0	0	0	1.70E- 01	0	3.96E- 01	MND	

fuels) - MJ/FU

Consumption of non-renewable resources, thereby lowering their availability for future generations


³ MND=Module Not Declared

			ı	USE (OF RESOU	RCES TRA	AIN CLIMA	AVER®							
	Product stage	Construction process stage					Use sta	ge		very,					
Parameters	A1/A2/A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishmen t	B6 Operational energy use	B7 Operational water use	C1 Deconstructio n / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
Use of renewable primary energy excluding renewable primary energy resources used as raw materials - MJ/FU	2.59E+01	2.92E-02	1.30E+00	0	0	0	0	0	0	0	0	2.10E-03	0	1.01E-02	MND
Use of renewable primary energy used as raw materials <i>MJ/FU</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) MJ/FU	2.59E+01	2.92E-02	1.30E+00	0	0	0	0	0	0	0	0	2.10E-03	0	1.01E-02	MND
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials - MJ/FU	4.89E+01	2.35E+00	2.59E+00	0	0	0	0	0	0	0	0	1.69E-01	0	3.93E-01	MND
Use of non-renewable primary energy used as raw materials <i>MJ/FU</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) - MJ/FU	4.89E+01	2.35E+00	2.59E+00	0	0	0	0	0	0	0	0	1.69E-01	0	3.93E-01	MND
Use of secondary material kg/FU	9.36E-01	0	4.68E-02	0	0	0	0	0	0	0	0	0	0	0	MND
Use of renewable secondary fuels- MJ/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Use of non-renewable secondary fuels - MJ/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Use of net fresh water - m3/FU	2.79E-02	4.53E-04	1.44E-03	0	0	0	0	0	0	0	0	3.27E-05	0	3.13E-04	MND

				WAST	TE CATEG	ORIES TR	AIN CLIMA	AVER®							
	Product stage		ion process age				Use stag	e	End-of-life stage				overy,		
Parameters	A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
Hazardous waste disposed kg/FU	1.81E-01	1.54E-03	9.12E-03	0	0	0	0	0	0	0	0	1.11E-04	0	1.47E-04	MND
Non-hazardous waste disposed kg/FU	1.02E+00	1.23E-01	1.78E-01	0	0	0	0	0	0	0	0	8.88E-03	0	2.40E+00	MND
Radioactive waste disposed kg/FU	8.85E-05	1.60E-05	5.38E-06	0	0	0	0	0	0	0	0	1.16E-06	0	1.90E-06	MND

					OTHER	OUTPUT	FLOWS T	RAIN CLIN	IAVER®							
		Product stage	Constr proces					Use stage		ery,						
Parameters		A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstructio n / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling
	Components for re-use kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
	Materials for recycling kg/FU	3.07E+0 0	0	4.57E- 01	0	0	0	0	0	0	0	0	0	0	0	MND
3	Materials for energy recovery kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
(3)	Exported energy MJ/FU	4.03E-03	0	2.01E- 04	0	0	0	0	0	0	0	0	0	0	0	MND

LCA Interpretation

 $[\]hbox{[1] This indicator corresponds to the abiotic depletion potential of fossil resources.}$

^[2] This indicator corresponds to the total use of primary energy.

^{| 3]} This indicator corresponds to the use of net fresh water.
| 4] This indicator corresponds to the use of net fresh water.
| 4] This indicator corresponds to the sum of hazardous, non-hazardous and radioactive waste disposed.